证明了在无向简单图中删除顶点后连通分支数与被删除顶点度数之间的一个不等式关系。
文章给出了几种常用方法,通过这些方法,可以较为简洁,方便地解决一些不等式的证明。
利用数形结合的思想为不等式构造解析几何模型,并加以推广。
通过一个代数不等式的证明,改进了文献[1]的结果。
1·This paper gives out a few methods to prove inequation and by which we can simply and quickly solve the problem.
文章给出了几种常用方法,通过这些方法,可以较为简洁,方便地解决一些不等式的证明。
2·Schedulability test inequation of the algorithm is presented in the paper. The validity and the flexibility of the algorithm are proved through the analysis of classical task sets.
文中给出该算法的可调度判定不等式,并且通过对经典任务集的调度结果,验证了算法的有效性和灵活性。
3·In this paper, the wide-diameter of generalized hypercube is proved in two ways whose difference is to use mathematical induction and constructing method to prove the inequation (1).
论文用两种方法给出了广义超立方体网络宽直径的具体证明,而两种方法的主要区别在于分别采用数学归纳法和直接构造法证明了不等式(1)。
4·A new reduced-order robust filtering method for linear system is derived based on linear matrix inequation methods.
作为大系统鲁棒滤波研究,本文利用线性矩阵不等式得到了一个新的线性系统降阶鲁棒滤波算法。
5·We only prove an inequation rather than the standard dataflow equation (8) because we are interested only in the correctness of the solution, not in its optimality.
我们只证明这个不等式方程,而没有证明标准数据流方程(8),原因是我们所感兴趣的只是解的正确性而不是解的最优性。