1·The rank of matrix which two matrices act right semi-tensor product is given.
介绍了矩阵的一种新的运算-拟半张量积,并相应的引入了一系列新的概念及其性质。
2·Reverse Order Law for the (t, s, 2) -inverse of Triple Matrix Semi-tensor Product.
三矩阵右半张量积的(T, S, 2) -逆的反序律。
3·Finally, the essential commutant of tensor product of operator algebras is discussed.
最后讨论了张量积代数的本性换位。
4·In this paper, we will study the tensor product of matrices over a Chain semiring, and.
本文研究链半环上矩阵的张量积,给出了成立的充要条件并指出了它的一些应用。
5·Reverse order law for the (T, S, 2)-inverse of arbitrary many matrices right semi-tensor product.
任意多个矩阵右半张量积的(T,S,2)-逆的反序律。
6·The subdivision rules based on the geometric interpretation of the tensor product scheme, and it can reproduce the surfaces of revolution.
其细分规则基于张量积曲面细分模式的几何意义,不仅可以生成旋转曲面等特殊曲面,而且可以根据参数来控制细分曲面的形状。
7·This paper offers a formula for localization of semilattices by using the tensor product and a relation between the tensor product and homomorphic semilattice.
本文给出半格局部化中一个张量积表示公式,并给出张量积与同态半格的关系。
8·The existence of a tensor product is proved in the left quasi-normal band category, and the relationship with the tensor product in the semi-group category is provided.
证明左拟正规带范畴中张量积的存在性,并证明了它与半群张量积的关系,同时给出半格在左拟正规带范畴中张量积与在半格范畴中张量积之间的关系。
9·In this paper, a fast algorithm for image interpolation based on the tensor product of matrices is presented, which transforms the vector interpolation model to matrix form.
这个矩阵需要很大的存储量和计算量。本文利用矩阵的张量积将原有的矢量插值模型转化成矩阵插值模型。
10·In this paper, we discuss isomorphic factorization for tensor product of two divisible graphs and prove the conditions for the tensor product graphs to be factorized isomorphically.
本文讨论了两个可分图的张量乘积图的同构因子分解问题。