1·Using the resolvent operator technique, we obtain the approximate solution to a system of set-valued quasi-variational inclusions.
利用预解式算子技巧构造了一类求变分包含逼近解的迭代算法,并讨论了由此算法产生的迭代序列的收敛性。
2·Range structure for the resolvent operator of the generator of a generalized infinite particle system with zero range interactions;
研究了广义零程粒子系统生成元的局部有界性和系统生成元预解算子的局部散逸性。
3·A new iterative algorithms to approximate the solution of the class of nonlinear implicit quasi variational inclusions in Banach space is constructed using resolvent operator.
利用预解式算子技巧构造了一类求变分包含逼近解的迭代算法,并讨论了由此算法产生的迭代序列的收敛性。
4·This paper studies the locally bounded property of a generalized infinite particle system with zero range interactions and the dissipation of the resolvent operator of the system generator.
研究了广义零程粒子系统生成元的局部有界性和系统生成元预解算子的局部散逸性。
5·In this paper, the applications of the local resolvent method in the operator theory are studied.
本文研究局部预解式方法在算子理论中的应用。
6·By using the approach of basic operator theory, a left multiplicative perturbation theorem of Cregularized resolvent families is proved.
应用算子理论方法,给出了一个C -正则预解族的左乘积扰动定理。