1·Mean Value Theorem. Go over Homework 3.
复习3平均值定理。讨论作业3。
2·A new way to prove Lagrange's mean value theorem is given using the theorem of interval nest.
应用区间套定理给出了拉格朗日中值定理一个新的证明。
3·Mean value theorem and Taylor formula are generally proofed by constructing an auxiliary function.
中 值 定理 是研究函数特性的一个有力工具。
4·This paper discusses the asymptotic rate of "mean value point" in second mean value theorem for integrals.
主要讨论了第二积分中值定理“中值点”的渐近性和渐近速度。
5·Secondly, the Lagrange mean value theorem in some proof of identity and the inequality in a wide range of applications.
其次,拉格朗日中值定理在一些等式和不等式的证明中应用十分广泛。
6·Study about the first mean value theorem for integrals, which obtain a new results on the mean value asymptotic behavior.
研究 积分第一中值定理,获得了其中值 渐 近性的一个新结果。
7·Results the value distribution properties of this function were solved and an interesting mean value theorem was obtained.
结果关于这个函数的值分布性质,给出了一个有趣的均值定理。
8·This paper gives the new method to prove the cauchy mean value theorem which also may be deduced from the Lagrange mean value theorem.
给出柯西中值定理的一个新的证法,说明柯西中值定理也可由拉格朗日中值定理导出。
9·This paper gives the new method to prove the Cauchy Mean Value Theorem, which also may be deduced from the Lagrange Mean Value Theorem.
给出柯西中值定理的一个新的证法,说明柯西中值定理也可由拉格朗日中值定理导出。
10·In this paper, second mean value theorem for integrals is studied, and some results of the inverse problem of the theorem are obtained.
给出了在各种情况下积分第二中值定理“中间点”的渐近性的几个结论,相信在积分学中有着很重要的作用。