1·This criterions is more conservative than those expressed by the matrix measure and matrix norm.
这个准则比用矩阵测度和矩阵范数来描述的准则具有更小的保守性。
2·Decentralized control of region for nonlinear composite systems with input saturation is studied by using Lyapunov's theory and matrix norm properties.
利用李雅普·诺夫方法和矩阵范数性质研究了具有饱和输入的非线性组合系统区域分散控制问题。
3·A upper bound with consistent matrix norm and the estimate for error of AOR iterative method for solving linear equation system, which based on the doubly diagonal dominance, are presented.
在双严格占优矩阵条件下,给出了相容矩阵范数的一个上界,并以此为基础,得到了线性方程组求解时的AOR迭代法的误差估计式。
4·Using comparison theorem and some properties of the matrix norm and the matrix measure, the paper provides several stability conditions for single and symmetric composite uncertain delay systems.
利用比较定理、矩阵范数和矩阵测度的有关性质,提出了简单不确定时滞系统及对称组合不确定时滞系统的稳定条件。
5·How to find Euclidean Norm of rows of a matrix with BLAS?
如何找到一个矩阵与欧几里德范数的BLAS行吗?
6·The problem of stability in the numerical integration schemes of nonlinear dynamic analysis of structures is discussed by using matrix and norm theory on a rigorous and complete basis in this paper.
本文在严格、完整的基础上,利用矩阵范数理论研究了结构非线性动力分析中数值积分格式的稳定性问题,给出了判别单自由度非线性动力方程积分格式稳定性的一般数学准则。
7·We discussed the problems of convergence by norm of a matrix, obtaining the formulation of error estimate and the conditions of convergence in requesting the solutions by iterative method.
利用矩阵的范数讨论了矩阵的收敛问题,得出了迭代法求解时的收敛条件及误差估计。
8·It maps original data to kernel space to get a kernel matrix, and utilizes kernel function and L1 norm to minimize the distance function.
运用核函数将原始数据映射到核空间中得到核矩阵,再利用L1范数使距离函数达到最小。
9·By this iterative method, the solvability of the equations can be determined automatically, and its reflexive matrix solution or least-norm reflexive matrix solution can be got within finite steps.
该算法可以判断矩阵方程组是否有自反矩阵解,并在有自反矩阵解时,可以在有限步迭代计算之后得到矩阵方程组的一个自反矩阵解或者极小范数自反矩阵解。
10·The estimations of maximum norm of damping matrix are also considered.
研究了阻尼矩阵的最大模估计。