1·The quasi-Newton method was applied to solving the augmented Lagrangian function of nonlinear programming problems. Further, the quasi-Newton formula was given.
应用拟牛顿算法求解非线性规划问题的增广拉格朗日函数,并给出了相应的拟牛顿公式。
2·We establish a Lagrange multiplier theorem for strict efficiency in convex settings and express strict points as saddle points of an appropriate Lagrangian function.
讨论凸多目标最优化问题的严有效解,建立了拉格朗日乘子定理,并把严有效解表示为一个适当的拉格朗日函数的鞍。
3·At first we can get the Lagrangian function from the elliptic equation, then replace differential coefficient by difference and get the discrete Lagrangian function.
给定一个椭圆方程,我们先找出这个方程的拉氏函数,用差分代替微分,得到离散的拉氏函数。
4·That the extended Bernoullian equations can be derived from the Lagrangian function under the condition of the flow being steady, demonstrates that the energy functional presen...
在恒定流的条件下,利用拉格朗日函数导出了推广的伯努利方程,从而说明了寻找的能量泛函的正确性。
5·To calculate the weight coefficients of the combination model firstly the Lagrangian multiplier method is applied to object function and equality constrains.
在组合模型的权重系数求解中,首先对目标函数和等式约束使用拉格朗日乘子法来求解权重系数。