1·For a harmonic oscillator the energy levels are evenly spaced.
对谐振子来说,能级是等间隔的。
2·We can work out positions of a harmonic oscillator by numerical methods .
我们可以按数值方法计算简谐振子的位置。
3·The harmonic oscillator is an exceptionally important example of periodic motion.
谐振子在周期运动中是特别重要的。
4·An exact solution is presented for the problem of a harmonic oscillator with variable mass.
本文给出了变质量谐振子的精确解。
5·The Solution of Harmonic Oscillator with Electric Charge at Electric Field in Coordinate Basis;
本文简要分析了在坐标表象、动量表象、粒子数表象中一维谐振子的性质。
6·Quantum dot gain spectra based on harmonic oscillator model are calculated including and excluding excitons.
基于谐振子模型的量子点能级,计算了包括和排除激子影响时多能级的增益谱。
7·The calculation method for the vibrational partition sums Qvib used is the harmonic oscillator approximation.
其中,转动配分函数考虑了离心扭曲修正,振动配分函数采用谐振子近似。
8·The formula of energy levels of two dimensional harmonic oscillator in the uniform magnetic field is derived.
推导出了三维各向同性谐振子在均匀磁场中的能级表达式并讨论了其最低能级及其简并度的变化。
9·The recurrence formula for radial martrix elements of two-dimensional isotropic harmonic oscillator are derived.
推导出二维各向同性谐振子径向矩阵元所满足的递推公式。
10·In Quantum Mechanics, the study of harmonic oscillator is very important in theoretic and in practical application.
在量子力学中,对谐振子的研究,无论在理论上还是在实践应用中都很重要。