1·One of the most common digital-signal-processing techniques is the discrete Fourier transform (DFT), which breaks a signal into its component frequencies and can be represented as a matrix.
最常见的数字信号处理技术之一是离散傅立叶变换(DFT),它把一个信号分解成它的组成频率,并表示成一个矩阵。
2·Each of its pixels is sensitive to specific incident angles and supplies a component of the mathematical operation called the Fourier Transform to produce an image about 20 pixels across.
它的每一个像素点都对指定的入射角十分敏感,并提供一部分称为“傅里叶变换”的数学运算以产生一张20像素的图像。
3·Fast Fourier transform (FFT) is the main algorithm for harmonic analysis in electric power system, but when there is the decaying DC component in input signal, FFT algorithm will have higher error.
快速傅里叶变换(FFT)是电力系统进行谐波分析的主要算法,但当输入信号中含有衰减直流分量时,FFT算法会产生较大的误差。
4·The decaying DC component is filtered in the Fourier algorithm, which improves data precision and simplifies hardware circuits.
并采用滤除衰减直流分量的傅氏算法,提高了数据精度、简化了硬件电路。
5·This paper studies several sorts of improved Fourier algorithm in recent years, particularly analyzes the method of filtering decaying DC component.
对近年来提出的几种改进傅氏算法进行分类研究,着重分析了其滤除衰减直流分量的方法。
6·The decaying DC component in the sampling signal will bring errors to the full-wave Fourier algorithm, which is derived with periodic signal.
全波傅氏算法是基于周期信号推导出来的,当采样信号中含有衰减直流分量时,将会产生误差。
7·The method USES the DC component and the first harmonic of a curve's chain code expressed by Fourier series to fit the curve, avoiding the inverse calculation of an array used in general methods.
该方法利用闭合曲线的傅立叶级数表示的直流分量和一次分量实现对闭合曲线的椭圆拟合,可以避免通常椭圆拟合方法中的矩阵求逆问题。
8·During the acoustic logging data process, the information of time-frequency of related spectral component can not be provided generally by means of Fourier Transformation (FT).
在声波测井资料处理的过程中,傅里叶变换通常不能提供有关谱分量的时间局域化的信息。
9·Because of the limitation of theory, Fourier algorithm is unable to filtering the periodic component, and especially poor in restraining decaying DC component which is common in current malfunction.
由于傅氏算法原理上的局限,它不能完全滤除非周期分量,尤其对电流故障中常见的衰减直流分量的抑制能力很差。
10·This paper introduces the method of analyzing TEOAEs by short time Fourier transform and gives the experiment results of time frequency distribution, then we analyze each frequency component.
本文介绍了用短时傅立叶变换分析瞬态诱发耳声发射方法,并给出了其时频分布的实验结果,分析了其各个频率成份出现的不同时刻及持续时间。