1·The results are analyzed an compared with those calculated by using the asymptotic analysis.
对所得结果作了分析并与用渐近分析法的计算结果作了比较。
2·The stress and strain singularity exponent of crack-tip field is given by means of the asymptotic analysis.
通过量级分析,给出了尖端场的应力应变奇异性指数。
3·An elastic viscoplastic material model was adopted to the asymptotic analysis on power law and logarithmic singularity of dynamic growing crack tip.
本文利用弹-粘-塑性材料力学模型,对动态扩展裂纹尖端的指数奇异性和对数奇异性进行了渐近分析。
4·On the basis of the governing equations and the asymptotic expansion of the stress fields proposed by Gao and Hwang, a generally asymptotic analysis is performed.
基于基本方程组和高玉臣、黄克智提出的应力场的渐近展开式作了渐近分析。
5·In this paper, we adopt the asymptotic analysis, get the time inner and outer solution of this model, and this time outer solution approximate the similarity solution.
文章采用渐近分析的方法求出了具有初始血栓层的该模型时间内解和外解,且该时间外解近似于相似性解给出的血栓的生长速度。
6·By applying formal asymptotic analysis, we obtain two-dimensional model system of linearly dynamic elastic "membrane" and "flexural" shells from three-dimensional equations.
利用形式渐进分析,我们从三维线性动态方程组得到二维膜壳和弯壳的方程组。
7·By applying formal asymptotic analysis and Laplace transformation, we obtain two-dimensional model system of linearly viscoelastic "flexural" shell from three-dimensional equations.
应用形式渐近分析和拉普拉斯变换,我们从三维线性粘弹性方程组得到二维线性粘弹性弯壳的数学模型。
8·Since the analysis and control of asymptotic behavior is main objective to the design project, it is necessity to study the stochastic large-scale system with delay.
在随机时滞大系统的系统分析中,系统的渐近行为分析和控制是工程设计的主要目标。故而,研究时滞随机大系统是很有必要的。
9·Moreover, the analysis has indicated that the asymptotic heuristic branching factor is same as the brute-force branching factor.
分析还表明渐进启发分支因数与遍历分支因数相同。
10·This paper is concerned with the asymptotic stability analysis of linear systems with signal quantization and state observation.
针对基于状态观测和信号量化的线性系统,进行了稳定性分析与研究。