1·We will have to compute something called the adjoint matrix.
我们要计算这个东西:伴随矩阵。
2·Adjoint matrix of matrix plays an important part during the matrix theory.
矩阵的伴随矩阵在矩阵理论中有着重要地位。
3·Adjoint matrix plays an important role in matrix operation and application.
伴随矩阵在矩阵的运算和应用中起着非常重要的作用。
4·In this paper the idea of synchronous vector and adjoint matrix are proposed.
本文提出了同步矢量和伴生矩阵的概念。
5·The forms of linear maps preserving adjoint matrix between two full matrix rings have been given.
研究了全矩阵环上保持伴随矩阵的线性映射的形式。
6·Several properties of adjoint matrix over an arbitrary ring and obtain some results over domain are given.
讨论了交换环上伴随矩阵的若干性质,给出了整环上的一个主要结论。
7·The method to calculate principal axes of inertia by adjoint matrix of eigen matrix is given, examples are presented.
本文给出了用特征矩阵的伴随矩阵求惯量主轴的代数方法,并通过实例作了说明。
8·The problem is reduced to a parallel one on complex matrices by using the complex adjoint matrix related to each quaternion matrix.
利用与每个四元数矩阵相关联的复伴随矩阵,问题被简化为关于复数矩阵的并行问题。
9·Based on the definition of accompanying matrix which is the derivative matrix of adjoint matrix, the properties of an accompanying matrix are explored and proved.
在定义伴随矩阵的衍生阵——陪同矩阵概念的基础上,探索陪同矩阵的性质并加以证明,同时给出应用举例。
10·An expression of the generalized eigenvector of adjoint matrices for nonsingular matrix a is derived.
给出了非奇异矩阵a的伴随的广义特征向量的表达式。