1·A real symmetric matrix a can be expressed as?.
一个实对称矩阵a能被表示为?。
2·A real symmetric matrix A can be expressed as ??.
它们可以方便地表示成下列矩阵形式。
3·Introduces the two-eigenvalue problem of a symmetric matrix and gives a formula to compute the matrix.
介绍了对称矩阵的两特征值问题,并给出了计算公式。
4·By the fractional method, characterized the linear preservers of the adjoint function on the symmetric matrix module.
应用分式化方法刻画了唯一分解环上对称矩阵模的保持伴随函数的线性变换的形式。
5·The real symmetric matrix, the diagonal matrix and the orthogonal basis of n-dimensional Euclidean space are studied.
研究实对称矩阵、对角矩阵以及欧氏空间的规范正交基。
6·A recursive algorithm for calculating the eigenvalues of a real symmetric matrix based on LDLT decomposition is given.
基于线性代数与矩阵理论,给出利用LDLT分解计算实对称矩阵特征值的递归算法。
7·The problem of computing a few of the largest (or smallest) eigenvalues of a large sparse symmetric matrix is investigated.
研究了计算大型稀疏对称矩阵的若干个最大或最小特征值的问题。
8·By using the contain theory and partition theorem of symmetric matrix, three conjectures about YANG Hui matrix are cetified.
它使用了对称矩阵特征根的包含原理和分隔定理,并利用了正矩阵特征根的性质。
9·This paper defines the generalized symmetric matrix and orthogonal matrix and discusses their properties and relations between them.
本文给出了广义对称(反对称)矩阵和广义正交矩阵的概念,讨论了它们的性质及相互之间的关系。
10·The paper discusses sub-diagonal and real anti-sub-symmetric matrix, and gives several properties of these two kinds of special matrix.
针对次对角矩阵与实反次对称矩阵进行了讨论,给出了次对角矩阵的特征值、实反次对称矩阵的次特征值及次特征向量等的性质。